Hyers–Ulam stability of impulsive Volterra delay integro-differential equations

نویسندگان

چکیده

Abstract This paper discusses different types of Ulam stability first-order nonlinear Volterra delay integro-differential equations with impulses. Such allow the presence two kinds memory effects represented by and kernel used fractional integral operator. Our analysis is based on Pachpatte’s inequality fixed point approach Picard operators. Applications are provided to illustrate results obtained in case a finite interval.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stability of a system of Volterra integro-differential equations

Using new and known forms of Lyapunov functionals, this paper proposes new stability criteria for a system of Volterra integro-differential equations.  2003 Elsevier Science (USA). All rights reserved.

متن کامل

Numerical Treatments for Volterra Delay Integro-differential Equations

This paper presents a new technique for numerical treatments of Volterra delay integro-differential equations that have many applications in biological and physical sciences. The technique is based on the mono-implicit Runge — Kutta method (described in [12]) for treating the differential part and the collocation method (using Boole’s quadrature rule) for treating the integral part. The efficie...

متن کامل

Exponential Stability of Impulsive Delay Differential Equations

and Applied Analysis 3 Note that V(t∗) = Q(t∗) + C 2 ‖Φ‖ τ e ∫ t ∗

متن کامل

Stochastic Volterra integro-differential equations: stability and numerical methods

We consider the reliability of some numerical methods in preserving the stability properties of the linear stochastic functional differential equation ẋ(t) = αx(t) + β ∫ t 0 x(s)ds+ σx(t− τ )Ẇ (t), where α, β, σ, τ ≥ 0 are real constants, and W (t) is a standard Wiener process. We adopt the shorthand notation of ẋ(t) to represent the differential dx(t) etc. Our choice of test equation is a stoc...

متن کامل

Stability Analysis of Runge-Kutta Methods for Nonlinear Neutral Volterra Delay-Integro-Differential Equations

This paper is concerned with the numerical stability of implicit Runge-Kutta methods for nonlinear neutral Volterra delay-integro-differential equations with constant delay. Using a Halanay inequality generalized by Liz and Trofimchuk, we give two sufficient conditions for the stability of the true solution to this class of equations. Runge-Kutta methods with compound quadrature rule are consid...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Difference Equations

سال: 2021

ISSN: ['1687-1839', '1687-1847']

DOI: https://doi.org/10.1186/s13662-021-03632-1